

CF5010 软件开发注意事项 REV1.0

苏州微五科技有限公司

版本历史

版本	日期	作者	修订内容
REV1.0	2023/1/19	Law Zhang	初版

1	简介4
2	解除读写保护5
3	Eclipse 开发环境7
4	JTAG
5	USART 更新相关10
6	IO 复用11
	6.1 CAN 复用功能重映射11
	6.2 把 OSC_IN/OSC_OUT 引脚作为 GPIO 端口 PD0/PD111
	6.3 定时器复用功能重映射12
	6.4 USART 复用功能重映射13
	6.5 I2C1 复用功能重映射13
	6.6 SPI1 复用功能重映射14
7	参考文档15

目录

1 简介

本笔记主要说明使用 CF5010 进行软件开发时需要注意的情况和 通用的处理方式,供开发人员使用。

2 解除读写保护

每一块未调试过的板子,都会默认开启对闪存编程擦除控制器(FPEC)的保护机制。

当在命令提示符对其使用 GDB 调试命令更新 ELF 文件时,会出现 如下错误信息:

图 1 GDB 擦写错误信息

如果需要用 GDB 或者 Eclipse 进行读写调试的话,首先需要对 FPEC 进行解除读写保护操作,请按照如下操作,进行解除读写保护:

- 1. JTAG 连接开发板,开发板上电
- 2. 打开 windows 命令提示符
- 3. 进入 openocd_win64\bin 路径下
- 4. 执行 openocd 和芯片建立连接:

openocd.exe -f "C:\Users\sf\Desktop\cf50xx_rev0.1.cfg"

5. 再打开一个 windows 命令提示符,运行 GDB 调试工具

- 6. 再打开一个 windows 命令提示符,运行 GDB 调试工具
- 7. 执行如下命令连接 GDB 端口号:
 - *a)* set architecture riscv:rv32
 - b) target extended-remote :3333
- 8. 输入如下命令, 解除芯片的 FPEC 读写保护:
 - a) set *(unsigned int*)0x40022004=0x45670123
 - b) set *(unsigned int*)0x40022004=0xCDEF89AB
 - *c) set* *(*unsigned int**)0x40022008=0xd6d44d16
 - d) set *(unsigned int*)0x40022008=0xc148d17a
 - e) set *(unsigned int*)0x40022014=0x2FFF800
 - f) set *(unsigned int*)0x40022010=0x0
 - g) set *(unsigned int*)0x40022010=0x20
 - h) set *(unsigned int*)0x40022010=0x60
 - *i)* set *(unsigned int*)0x40022010=0x10
 - *j)* set *(unsigned int*)0x2FFFF800=0x00FF5AA5

以上操作执行完成,即可完成对 CF5010 的 FPEC 解除读写保护, 以后便可直接使用 GDB 或者 Eclipse 对其进行开发工作。

3 Eclipse 开发环境

CF5010 使用 Eclipse 集成开发环境进行开发。详细使用教程可参考《CF5010 集成开发环境&升级工具_REV1.0》的开发工具 Eclipse 章节。

4 JTAG

CF5010 支持 JTAG4 线调试接口。开发板上 J4 接口与芯片端 JTAG 接口直接连通。调试时可以使用如下图调试工具连接 IDE 及芯片,从 而进行仿真调试及程序下载。

图 2 调试工具

- 接口电路为: TMS、 TCK、 TDI、 TDO,分别为模式选择、时钟、数据输入和数据输出线。
- 调试建议 OpenOCD 配合 GDB 使用
- 硬件建议使用 Olimex 生产的 ARM-USB-TINY-H 天猫采购地址:

https://detail.tmall.com/item.htm?id=535944150177&spm=a1z09.81 49145.w4023-14306215779.22.2c6a61f4p6peur

官方采购地址:

https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY-H/

JTAG 和开发板的连线线序如下:

图 3 JTAG 线序 1

图 4 JTAG 线序 2

5 USART 更新相关

CF5010 开发板共有 USART1、USART2、USART3 和 UART4,4组 串口。其中在默认 SDK 中使用 UART4 作为调试串口,USART1 作为 ISP 更新串口使用。

关于 USART 以及 ISP 更新额详细操作,请参考《CF5010 集成开发 环境&升级工具_REV1.0》的软件升级工具章节。

ChinaFive 微五科技

6 IO 复用

CF5010 使用 LQFP64 封装,总共有 64 个引脚。为了优化 64 脚 封装的外设数目,可以把一些复用功能重新映射到其他引脚上。设置 复用重映射和调试 I/O 配置寄存器(AFIO_MAPR)实现引脚的重新 映射。这时,复用功能不再映射到它们的原始分配上。

对于开发板上引脚的详细分布,请参考《CF5010 开发板_REV1.0》的排母接口章节。

6.1 CAN 复用功能重映射

CAN 信号可以被映射到端口 A、端口 B 或端口 D 上,如下表 所示。

复用功能	CAN_REMAP[1:0]=00	CAN_REMAP[1:0]=10	CAN_REMAP[1:0]=11
CAN_RX	PA11	PB8	PD0
CAN_TX	PA12	PB9	PD1

表 1 CAN 复用功能重映射

6.2 把 OSC_IN/OSC_OUT 引脚作为 GPIO 端口 PD0/PD1

外部振荡器引脚 OSC_IN/OSC_OUT 可以用做 GPIO 的 PD0/PD1,通过设置复用重映射和调试 I/O 配置寄存器(AFIO_MAPR)

实现。

注:外部中断/事件功能没有被重映射。

6.3 定时器复用功能重映射

参见复用重映射和调试 I/O 配置寄存器(AFIO_MAPR)。

表 2 TIM3 复用功能重映像

复用功能	TIM3_REMAP[1:0]=00 (没有重映像)	TIM3_REMAP[1:0]=10 (部分重映像)	TIM3_REMAP[1:0]=11 (完全重映像)
TIM3_CH1	PA6	PB4	PC6
TIM3_CH2	PA7	PB5	PC7
TIM3_CH3	PBO	PBO	PC8
TIM3_CH4	PB1	PB1	PC9

表 3 TIM2 复用功能重映像

	TIM2_REMAP[1:0]	TIM2_REMAP[1:0]	TIM2_REMAP[1:0]	TIM2_REMAP[1:0]
复用功能	=00	=01	=10	=11
	(没有重映像)	(部分重映像)	(部分重映像)	(完全重映像)
TIM2_CH1_ETR	PAO	PA15	PAO	PA15
TIM2_CH2	PA1	PB3	PA1	PB3
TIM2_CH3	PA2	PA2	PB10	PB10
TIM2_CH4	PA3	PA3	PB11	PB11

注: TIM2_CH1 和 TIM2_ETR 共用一个引脚,但不能同时使用(因此在此使用标记: TIM2_CH1_ETR)。

6.4 USART 复用功能重映射

参见复用重映射和调试 I/O 配置寄存器(AFIO_MAPR)。

表 4 USART3 复用功能重映像

有田市能	$USART3_REMAP[1:0] = 00$	$USART3_REMAP[1:0] = 01$
反用功肥	(没有重映像)	(部分重映像)
USART3_TX	PB10	PC10
USART3_RX	PB11	PC11
USART3_CK	PB12	PC12
USART3_CTS	PB13	PC13
USART3_RTS	PB14	PC14

表 5 USART1 复用功能重映像

复用功能	USART1_REMAP = 0	USART1_REMAP = 1 (部分重映像)
USART1_TX	PA9	PB6
USART1_RX	PA10	PB7

6.5 L·C1 复用功能重映射

参见复用重映射和调试 I/O 配置寄存器(AFIO_MAPR)。

表 6 I2C1 重映像

复用功能	$I2C1_REMAP = 0$	$I2C1_REMAP = 0$
I2C1_SCL	PB6	PB8
I2C1_SDA	PB7	PB9

6.6 SPI1 复用功能重映射

参见复用重映射和调试 I/O 配置寄存器(AFIO_MAPR)。

复用功能	SPI1_REMAP = 0	SPI1_REMAP = 1
SPI1_NSS	PA4	PA15
SPI1_SCK	PA5	PB3
SPI1_MISO	PA6	PB4
SPI1_MOSI	PA7	PB5

表 7 SPI1 重映像

7 参考文档

- 1. 《CF5010 Spec LQFP64 rev1107》
- 2. 《cf5010 core board rev1_0 202112》
- 3. 《CF5010集成开发环境&升级工具_REV1.0》
- 4. 《CF5010 Data sheet》
- 5. 《CF5010 low lever lib》